Russian Journal of Organic Chemistry, Vol. 37, No. 4, 2001, pp. 598-599. Translated from Zhurnal Organicheskoi Khimii, Vol. 37, No. 4, 2001, pp. 632-633.

Original Russian Text Copyright © 2001 by Odinokov, Akhmetova, Savchenko, Bazunova, Khalilov.

_ SHORT COMMUNICATIONS

Tetrakispyridinium Derivative of Perfluorosuccinic Acid Dimer

V.N. Odinokov, V.R. Akhmetova, R.G. Savchenko, M.V. Bazunova, and L.M. Khalilov

Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, Bashkortostan, 450075 Russia

Received May 11, 2000

We reported [1] on synthesis of 2.7-dioxo-5,5,10,10-tetrahydroxy-3,3,4,4,8,8,9,9-octafluoro-1,6-dioxacyclodecene (I) by ozonolysis of 1-methoxyperfluorocyclobutene dissolved in Freon-113. Compound I is a hydrated form of the dimeric anhydride of perfluorosuccinic acid.

It was established that the reaction of compound **I** with acetic anhydride in pyridine yielded its tetrakispyridinium derivatives with the structure of 2,5,7,10tetrapyridinio-3,3,4,4,8,8,9,9-octafluoro-1,6-dioxacyclodecane-2,5,7,10-tetraoxide (**II**) (see the Scheme).

The structure of compound **II** is confirmed by ¹³C NMR spectrum containing only two signals from the carbon carcass [triplet of triplets from CF₂ groups ($\delta_{\rm C}$ 111.40 ppm, ¹ $J_{\rm CF}$ 263.4, ² $J_{\rm CF}$ 30.0 Hz), and a triplet ($\delta_{\rm C}$ 165.14 ppm, ² $J_{\rm CF}$ 26.7 Hz) from the other

four carbons of the cycle] that evidences a symmetry in the molecule. The pyridinium groups of compound II appear as 3 signals of carbon atoms in the region $\delta_{\rm C}$ 128.20, 144.12, and 146.48 ppm characteristic of the pyridinium cation (cf. [2]). In the ¹H NMR spectrum of compound II are present 3 signals (2:1:2) corresponding to the protons of pyridinium groups (8.86 d, J 5.1 Hz; 8.04 d.d, J 5.1 and 7.9 Hz; 8.59 d, J 7.9 Hz). In the IR spectrum of compound II appear a strong absorption band in the region v 1665 cm⁻¹ and a less strong at 1750 cm⁻¹. It is presumable that the presence of the latter band evidences the possibility of a reversible conversion of compound II into a tautomeric form IIa containing a carbonyl group. The increased frequency of the stretching vibrations of the carbonyl group is characteristic of α -halosubstituted amides [3].

1070-4280/01/3704-0598\$25.00 © 2001 MAIK "Nauka/Interperiodica"

It is presumable that the first stage in compound **II** formation consists in generation of bis-anhydride A that reacts with pyridine to afford *N*-acylpyridinium carboxylate B similarly to the reaction between anhydrides of carboxylic acids with pyridine [4]. Next apparently follows the intramolecular attack of the carboxylate-anion on the carbonyl group to form a cyclic system C. Four-fold succession of this process results in the final reaction product **II**.

To 5 ml of a mixture (2:3) of acetic anhydride and pyridine at room temperature was added while stirring 0.73 g (1.92 mmol) of compound **I**. The reaction mixture was stirred for 5 h and left standing for 48 h. The separated precipitate was filtered off and washed with ethyl ether. We obtained 0.99 g (78%) of compound **II**, mp 92–94°C. IR spectrum, cm⁻¹: 3400 (*W*/2 400), 3060 (*W*/2 130), 2980–2400, 2300– 2000, 1750, 1665, 1540, 1480, 1380, 1205, 1120, 1100, 970, 800, 750, 710, 700, 680, 630, 595, 530. ¹H NMR spectrum, (300.13 MHz, CD₃OD), δ , ppm (*J*, Hz): 8.04 d.d (8H, H^{3'}, *J* 5.1 and 7.9), 8.59 d (4H, H^{4'}, J 7.9), 8.86 d (8H, H^{2'}, J 5.1). ¹³C NMR spectrum (75 MHz, CD₃OD), $\delta_{\rm C}$, ppm, (J, Hz): 111.40 (C^{3,4,8,9}, ¹J_{CF} 263.4, ²J_{CF} 30.0), 128.20 (8C, C^{3'}), 144.12 (8C, C^{2'}), 146.48 (4C, C^{4'}), 165.14 (C^{2,5,7,10}, ²J_{CF} 26.7). Found, %: C 50.48, 50.59; H 3.25, 3.19; N 8.18, 8.34. C₂₈H₂₀F₈N₄O₆. Calculated, %: C 50.91; H 3.05; N 8.48.

REFERENCES

- Odinokov, V.N., Akhmetova, V.R., Bazunova, M.V., Paramonov, E.A., and Khalilov, L.M., *Mendeleev Commun.*, 1998, vol. 8, no. 3, pp. 120–122.
- Levy, G.C., Lichter, R.L., and Nelson, G.L., Carbon-13 Nuclear Magnetic Resonance Spectroscopy, New York: Wiley Intersc., 1980.
- 3. Bellamy, L.J., *The Infra-Red Spectra of Complex Molecules, Methuen,* London, and Wiley, New York, 1958.
- 4. Höfle, G., Steglich, W., and Vorbrüggen, H., *Angew. Chem.*, 1978, vol. 90, no. 16, pp. 602–615.